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bstract

Phase stability calculation is a very important topic in phase equilibrium modeling. Usually the phase stability problem is solved by minimization
f the tangent plane distance (TPD) function, the sign of the objective function at its global minimum indicating the state of the mixture at given
onditions. The TPD function is non-convex and may be highly non-linear, many phase stability problems being really challenging. The tunneling
lobal optimization method had been successfully used for solving a variety of phase equilibrium problems, including stability, with cubic equations
f state (EoS). In this work, we test the ability of the tunneling method to solve the phase stability problem for more complex EoS like PC-SAFT.
alculations are performed for several benchmark problems, for mixtures of non-associating molecules, from binaries to multicomponent. In one

xample, the mixture contains hydrogen sulphide, for which the three parameters required by the PC-SAFT EoS were unavailable in the literature.
hese parameters, as well as the binary interaction parameter (BIP) between hydrogen sulphide and methane, were calculated based on experimental
ata.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Phase stability analysis calculations represent an important
ubproblem of phase equilibrium calculations. It is intensively
sed in research and industrial applications for chemical pro-
ess simulation, design and optimization, hydrocarbon reservoir
ngineering, etc. Phase stability analysis can asses the state of a
ixture at given conditions; it is very useful for initialization of

hase split calculations, as well as for their validation.
The criteria for thermodynamic stability were first set by

ibbs [1]; Baker et al. [2] provided a comprehensive analysis
f these criteria, while Michelsen [3] proposed the implemen-
ation of the TPD function, which is currently the most widely
sed.
∗ Corresponding author. Tel.: +33 5 5940 7685; fax: +33 5 5940 7725.
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PC-SAFT equation of state

The dimensionless TPD function, Michelsen [3], has the form

¯ (x) = D(x)

RT
=

nc∑
i=1

xi(ln fi(x) − ln fi(z)) (1)

here fi is the fugacity of component i, z = (z1,. . .,znc)T is the
omposition of the feed whose stability is assessed.

The vector of primary variables is x = (x1,. . .,xnc−1)T contain-
ng the mole fractions in the trial phase; here we have considered
he mole fraction of component “nc” as dependent variable

nc = 1 −
nc−1∑
i=1

xi (2)
The problem can be formulated as an optimization prob-
em or as the resolution of non-linear system of equations. The

inimization problem to be solved is:
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Nomenclature

a reduced Helmholtz free energy
A Helmholtz free energy (J)
d temperature-dependent segment diameter (Å)
D tangent plane distance function
D̄ dimensionless tangent plane distance function
fi fugacity of component i
F objective function for the tunneling method
ghc average radial distribution function of hard-chain

fluid
ghc

αβ site–site radial distribution function of hard-chain
fluid

I1, I2 integral functions; defined by Eq. (15) and (16)
k Boltzmann constant (J/K)
kij binary interaction parameter between compo-

nents i and j
m number of segments per chain
m̄ mean segment number in the system
n umber of independent variables
nc number of components
p pressure (bar)
R universal gas constant
SBP objective function (BP pressure method)
SFlash objective function (Flash method)
T temperature (K)
T tunneling function
Tc(x) classical tunneling function
Te(x) exponential tunneling function
x independent variable (Section 3)
xi mole fraction of component i in the trial phase
xi liquid mole fraction of component i, Eq. (40) and

(41)
xm stationary points
xtu feasible point in another valley of the objective

function
yi mole fraction of component i in the trial phase
zi feed composition, component i
Z compressibility factor

Greek letters
ζn defined by Eq. (7), n = 0, 1, 2, 3 (Ån−3)
η packing fraction; η = ζ3
λm strength of the pole at the point xm
ρ total number density of molecules (1/Å3)
σ segment diameter (Å)
σP standard percent relative deviation in pressure
σx standard percent deviation in liquid mole fraction
σy standard percent deviation in vapor mole fraction
ϕi fugacity coefficient of component i

Superscripts
calc calculated property
disp contribution due to dispersive attraction
hc residual contribution of hard-chain system
hs residual contribution of hard-sphere system

res residual property
T transposed
* at stationary points
ν iteration level

Subscripts
G at the global minimum
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i, j, k component index

Find

in D̄(x)

.t.

≤ xi ≤ 1; i = 1, nc − 1

A phase is stable if all stationary points of D are non-negative,
hat is, the value of the TPD function at the global minimum is
ero (the trivial solution x ≡ z is always a stationary point of
); a negative value of D at a stationary point indicates that the
ixture is unstable and will split into two or more phases at

iven conditions.
The TPD surface is non-convex and may be highly non-linear;

t has many stationary points (including trivial solutions and
on-physical solutions) which can be local minima or saddle
oints. Even though they may be very fast, local solution meth-
ds are initialization dependent, and may converge to undesired
tationary points different from the putative global minimum.
ocal methods are finding a single stationary point for a given

nitial guess; in a multiphase context, starting from many dif-
erent initial guesses still does not offer the guarantee that the
lobal minimum was found [3].

The TPD analysis requires the component fugacity (or
hemical potential) at given pressure, temperature and feed com-
osition. As mentioned, minimization of the TPD function is a
ifficult problem itself; additional complexity may be added by
he thermodynamic model.

Mainly in the last decade, a variety of global optimization
ethods have been used to solve the global stability problem:

omotopy continuation [4], branch and bound [5–8], Newton-
nterval [9–12], simulated annealing [13], space search [14],
unneling [15–19]. Some of these methods are designed to find
ll the stationary points, while others are computing only the
lobal minimum. They were applied to different thermodynamic
odels, from relatively simple (such as cubic EoS) to very com-

lex ones.
In our previous work on phase stability analysis we have

sed the gradient-based tunneling global optimization method
ogether with a general form of cubic EoS. Different formula-
ions of the TPD criterion have been used, including those based

n reduced variables [16], component molar densities as primary
ariables [18], or using a modified objective function [19].

The aim of this work is to study the ability of the tunneling
ethod when complex thermodynamic models are used.
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Starting from the original statistical association fluid theory
SAFT) EoS proposed by Chapmann et al. [20], a variety of
quations of state were proposed; see for instance the compre-
ensive review by Müller and Gubbins [21]. In this work we
se the perturbed-chain SAFT (PC-SAFT) EoS, as introduced
y Gross and Sadowski [22].

In this work, we are focusing on mixtures containing hydro-
arbon components and hydrogen sulphide, carbon dioxide and
itrogen, such as naturally occurring reservoir fluids. The PC-
AFT EoS proved to give good results for synthetic hydrocarbon
ixtures [23].
Petroleum reservoir mixtures (hydrocarbons + classical con-

aminants, except water) can be treated without association,
onsidering only the dispersive term in the PC-SAFT EoS.

The paper is structured as follows: we first briefly present
he PC-SAFT EoS, then we describe an up-to-date version
f the tunneling global optimization method as implemented
n this work (we stress on handling tolerances for generating
he initial points in the tunneling phase, which are crucial for
he robustness of the method); finally, the reliability and effi-
iency of the tunneling method are tested on several difficult
umerical examples. The component parameters and the BIP
etween methane and hydrogen sulphide required by one exam-
le are calculated by matching experimental data available in the
iterature.

. The PC-SAFT equation of state

In the PC-SAFT equation of state [22], the molecules are
onceived to be chains composed of spherical segments, in
hich the pair potential for the segment of a chain is given
y a square-well potential suggested by Chen and Kreglewski
24]. Non-associating molecules are characterized by three pure
omponent parameters: the number of segments per chain m,
he depth of the potential ε, and the temperature independent
egment diameter σ. In this section, we will only summarize the
ain expressions of the PC-SAFT equation of state; full details

an be found in the original paper by Gross and Sadowski [22].
The PC-SAFT equation of state is written in terms of the

elmholtz free energy A that, for a multicomponent mixture
f non-associating chains, consists of a hard-chain reference
ontribution and a perturbation contribution to account for the
ttractive interactions. In terms of reduced quantities, this equa-
ion can be expressed as

˜ res = ãhc + ãdisp (3)

here a = A/nkT.
It should be noted that the contribution due to association

s not included in this work since we are dealing with non-
ssociating systems. Therefore, only dispersive attractions are
onsidered.
The hard-chain reference contribution is given by

˜hc = m̄ ãhs −
nc∑
i=1

xi(mi − 1) ln ghs
ii (σii) (4)

w
i
i

ing Journal 140 (2008) 509–520 511

here m̄ is the mean segment number in the mixture

¯ =
nc∑
i=1

ximi (5)

The Helmholtz free energy of the hard-sphere fluid is given
n a per-segment basis

˜hs= 1

ζ0

[
3ζ1ζ2

1 − ζ3
+ ζ3

2

ζ3(1 − ζ3)2 +
(

ζ3
2

ζ2
3

− ζ0

)
ln(1 − ζ3)

]
(6)

ith ζn defined as

n = π

6
ρ

nc∑
i=1

ximid
n
i ; n = 0, 1, 2, 3 (7)

nd the radial distribution function of the hard-sphere fluid given
y

hs
ij = 1

1 − ζ3
+
(

didj

di + dj

)
3ζ2

(1 − ζ3)2

+
(

didj

di + dj

)2 2ζ2
2

(1 − ζ3)3 ; i, j = 1, nc (8)

The temperature-dependent segment diameter di of compo-
ent i is given by

i = σi

[
1 − 0.12 exp

(
−3

εi

kT

)]
(9)

here k is the Boltzmann constant and T is the absolute temper-
ture.

The dispersion contribution to the Helmholtz free energy is
iven by

˜disp = −2πρ I1(η, m̄) m2εσ3

−πρ m̄

(
1 + Zhc + ρ

∂Zhc

∂ρ

)−1

I2(η, m̄)m2ε2σ3 (10)

here Zhc is the compressibility factor of the hard-chain refer-
nce contribution, and

2εσ3 =
nc∑
i=1

nc∑
j=1

xi xj mi mj

( εij

kT

)
σ3

ij (11)

2ε2σ3 =
nc∑
i=1

nc∑
j=1

xi xj mi mj

( εij

kT

)2
σ3

ij (12)

The parameters for a pair of unlike segments are obtained by
sing conventional Lorentz–Berthelot combining rules

ij = √
εiεj(1 − kij) (13)

ij = 1
(σi + σj) (14)
2

here kij is a binary interaction parameter between components
and j which is introduced to correct the segment–segment

nteractions of unlike chains.
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can behave similarly to a normal quasi-Newton, if the number
of gradient and step vectors used to update the approximation of
the Hessian is taken equal to n (see [30]). In this code the criteria
to consider a successful local optimization is given by:
12 D.V. Nichita et al. / Chemical Eng

The terms I1(η, m̄) and I2(η, m̄)in Eq. (10) are substituted by
imple power series in density

1(η, m̄) =
6∑

i=0

ai(m̄)ηi (15)

2(η, m̄) =
6∑

i=0

bi(m̄)ηi (16)

here the coefficients ai and bi depend on the chain length as
iven in Gross and Sadowski [22].

The density to a given system pressure psys is determined
teratively with the Newton–Raphson method by adjusting the
educed density η until pcalc = psys. For a converged value of η,
he number density of molecules ρ (given in Å−3) is calculated
rom

= 6

π
η

(
nc∑
i=1

ximid
3
i

)−1

(17)

The molar density ρ can be expressed in different units such
s kmol m−3 by using Avogadro’s number and appropriate con-
ersion factors.

The compressibility factor Z is calculated from the relation

= 1 + η

(
∂ãres

∂η

)
T,xi

= 1 + Zhc + Zdisp (18)

The pressure can be calculated in SI units of Pa = N/m2 by
pplying the relation

= Z kTρ

(
1010 Å

m

)3

(19)

The fugacity coefficient ϕi(T,p); i, j = 1, nc is related to the
esidual chemical potential according to

n ϕi = μres
i (T, v)

NkT
− ln Z (20)

here μres
i is obtained from

μres
i (T, v)

NkT
= ãres + (Z − 1) +

(
∂ ãres

∂xi

)
T,v,xj �=i

−
nc∑

k=1

[
xk

(
∂ãres

∂xk

)
T,v,xj �=k

]
(21)

In Eq. (19), partial derivatives with respect to mole fractions

re calculated regardless of the summation relation
nc∑
i=1

xi = 1.

. The tunneling global optimization method
.1. The tunneling method

The code used in this work is based on the classical Levy and
ontalvo [25] and exponential Barrón–Gómez [26] tunneling
ing Journal 140 (2008) 509–520

ethods, modified to deal with bounded problems to find global
ptima of non-linear smooth functions, subject to bounds on the
ariables, that is

F∗
G ≡ inf{F (x)}

subject to x ∈ B
(22)

here B = {x ∈ Rn: l ≤ x ≤ u; l, u ∈ Rn; i = 1,n} is the feasible
egion and F: B → R: F ∈ C2.

The basic idea of these methods is to tunnel from one val-
ey of the objective function to another, to find a sequence of
ocal minima with decreasing function values, F (x∗

1) ≥ F (x∗
2) ≥

· · ≥ F (x∗
G), where x∗

G is the global minimum of F(x) and xi �= xj

or i �= j, ignoring the local minima with larger objective func-
ion values than the ones already found (up to a tolerance given
y the user). This characteristic of “ignoring” minima makes the
lgorithm more efficient and faster than other general purpose
ethods like simulated annealing, random search, clustering and

enetic algorithms (see Gómez et al. [27]).
The tunneling method has two phases. In phase 1, the min-

mization phase, starting from an initial point x0, finds a local
inimum x* with F* = F(x*), using any local bound constrain

ptimization method. In phase 2, the tunneling phase, a feasible
oint x∗

tu is obtained in another valley with F (x∗
tu) ≤ F∗, which

ill be taken as the initial point for the subsequent phase 1 (see
ig. 1).

.2. Minimization phase

Any algorithm designed to solve local optimization problems
ith bounds on the variables can be used in this phase. We use
ere a limited-memory quasi-Newton BFGS method [28,29].
he implementation is designed to solve large size problems,
ut when the problem is of small size (that is, problem dimen-
ionality is from n = 3 to n = 40) as it is in our case, the method
Fig. 1. The basic idea of the tunneling method.
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(a) The infinity norm of the projected gradient at the current
iteration is sufficiently small:

||proj g(xν+1)||∞ ≤ PGTOL (23)

with PGTOL being a positive small tolerance (less than one)
given by the user.

b) No further improvement in the successive values of the
objective function is possible

Fν+1 − Fν| ≤ TOLF(1 + |Fν+1|) (24)

ith Fv+1 = F(xv+1) and Fv = F(xv)
In some local optimization codes, TOLF is given by the user.

n the case of the code L-BFGS-B used here

OLF = FACTR · epsmch (25)

with epsmch being the machine precision which is auto-
atically generated by the code and the user supplies a value

ACTR ∈ [100,1015]. Typical values for FACTR on a com-
uter with 15 digits of accuracy in double precision are:
ACTR = l.d + 12 for low accuracy; FACTR = l.d + 7 for mod-
rate accuracy; FACTR = l.d + l for extremely high accuracy. If
he user sets FACTR = 0, the test will stop the algorithm only if
he objective function remains unchanged after one iteration.

.3. Tunneling phase

.3.1. Tunneling functions
Once a local minimum x* has been found, we have to solve

n inequality problem:
Find the x∗

tu such that

(x∗
tu) = F (x∗

tu) − F (x∗) ≤ 0, x∗
tu �= x∗ (26)

If an x∗
tu is found, it would be in another valley.

To solve the inequality problem (26) using gradient type
ethods, we place a pole at x* to destroy the minimum, and cre-

te a transformed problem using one of the following functions
where ||·|| is the squared Euclidean norm) (see Fig. 2):

Tunneling function [25]

c(x) = F (x) − F (x∗)

||x − x∗||λ∗ (27a)

Exponential tunneling function [26]

e(x) = (F (x) − F (x∗))e(λ∗/||x−x∗||) (27b)

The exponential function is generally faster.When
|x − x*|| > 1 functions Tc and Te become flat slowing the
onvergence to x∗

tu, and thus we need to modify them as
ollows:

e(x) =
{

(F (x) − F (x∗))e(λ∗/||x−x∗||) if ||x − x∗|| < 1

F (x) − F (x∗) if ||x − x∗|| ≥ 1

(28)

The same applies for the classical tunneling function. For
oth functions, λ* is the strength of the pole and to guarantee

T

s

ig. 2. Generating a new feasible initial estimate by placing a pole and destroy-
ng the minimum already found.

ontinuity and differentiability at points with ||x − x*|| = 1, we
se the ramp function introduced in Levy and Montalvo [25].

Solving problem (26) now consists in finding x∗
tu such that

c(x∗
tu) ≤ 0 or Te(x∗

tu) ≤ 0 (29)

We can take Newton type descent directions to solve this
nequality problem since T(x) is smooth for x �= x* and thus it
s possible to use the same algorithm used in the minimization
hase that produce descent directions, with appropriate stopping
onditions to solve the inequality problem (29).

As the original objective function is a general non-linear
unction only assumed to belong to C2 for x ∈ B, it could
ave many local and global minima and convergence to other
inima with the same (and so far the best) value F* of the

bjective function (at the same level) is possible, that is, with
(x∗

i ) = F (x∗
i−1) = F∗. Those would be acceptable solutions

or problem (26) satisfied at the equality. Then, in order to avoid
oing back to those minima at the same level already found,
uring the tunneling phase the poles set at each minimum are
reserved until a better lower value of the objective function is
ound. When this happens, the poles are no longer needed as
he algorithm will never accept a point with F(x) > F(x*). The
unneling functions (27a) and (27b) take the form:

c(x) = F (x) − F (x∗)∏t
i=1||x − x∗

i ||λ
∗
i

(30a)

nd

∗
t∏

(λ∗/||x−x∗||)

e(x) = (F (x) − F (x ))

i=1

e (30b)

making t = 1 as soon as a new minimum is found with a
maller function value than F(x*).
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The specific algorithm is as follows:
Given an initial guess x0 until convergence do

Phase 1—local minimization
From an initial point x0

Find arg min
x ∈ B

F (x) = x∗

Phase 2—tunnelization
From an initial point x0

tu in a neighborhood of x*

Find x∗
tu such that T (x∗

tu) ≤ 0 and x∗
tu ∈ B using the local opti-

mization routine used in phase 1 to generate descent directions
and acceptable step lengths for T(x).
Set x∗

tu → x0, and go to phase 1.

.3.2. Initial point for the tunneling phase
Once a local minimum x* has been found, we need to generate

n initial point x0
tu to start the tunneling phase. This point is

enerated along a random direction in a neighborhood of x*, to
reserve local information, as follows:

0
tu = x∗ + ε1

r

||r|| (31)

here rT = (r1,. . .,rn) with ri ∈ (−1, 1) for i = 1, n, random with
ormal distribution.

Parameter ε1 is the minimum distance from x* to x0
tu and must

e selected in such a way, that the new initial point x0
tu is in a

eighbourhood of x* and is related to the desired precision in
*. It has to be carefully selected to avoid a conflict with other
olerances of the method (as the one that decides that another
oint is a minimum at the same level). This can be clearer with
he following analysis:

It is known (see Gill et al. [31]) that for a well-conditioned
roblem, satisfaction of Eq. (24) implies that

|xν+1 − xν|| ≤
√

TOLF
(

1 + ||xν+1||
)

(32)

If x∗
e represents the exact minimum and x* = xv+1 is an approx-

mated, then the right-hand-side of (13) is also an upper bound
or the distance from x∗

e to x*, i.e.:

|x∗
e − xν|| ≤

√
TOLF

(
1 + ||x∗||) (33)

under the assumption stated. In order not to take any other
ossible minimum within the neighborhood of x∗

e of radius
TOLF ∗ (1 + ||x∗||), the initial point for the tunneling phase

hould satisfy.

TOLF
(
1 + ||x∗||) ≤ ||x∗

e − x0
tu|| (34)

As we only have the approximated minimum and not the
xact one, then the distance from x* to x0

tu should be at least
√

TOLF(1 + ||x∗||) (35)

As the condition of a well-conditioned problem that we
ssume for this derivation is not always satisfied in practice,

e relax the bound as

1 = 2(TOLF)c(1 + ||x∗||) (36)

ith c = 1/5.

i
i
i
n

ing Journal 140 (2008) 509–520

This choice for the initial point of the tunneling phase dif-
ers from the ones presented in Levy and Montalvo [25] and
arrón and Gómez [26] and is adaptive in the sense that the
inimum distance ε1 depends on the current local minimum to

e destroyed.
Tunneling would not be successful (condition (29) has not

een satisfied yet) due to any of the following reasons:

(i) A corner of the admissible set has been reached.
(ii) The strength of the pole is greater than a preset maximum

value without having obtained a descent direction.
iii) The maximum number of function evaluations allowed for

this phase has been reached.

In any of these cases it is necessary to restart tunneling from
nother initial point, x0

tu. In our implementation the number of
nitial points generated in a neighborhood of x* using Eq. (31)
s 2n, where n is the problem dimension. In order to explore
urther, we then take initial points generated at random in the
hole feasible region until the amount of computing time given
y the user is reached. The default value is max(100,5n). If no
olution to problem (26) is found for this number of initial points,
he algorithm will stop (see Section 3.4).

.3.3. Mobile poles
As T(x) inherits the multimodality of F(x), the local method

sed in the tunneling phase could have problems at critical points
f T(x). Also, it can find points where the tunneling function
alues or the iterands cannot be improved (through conditions
23) or (24) on T(x)). Here again, to be able to move from this
oint we place a pole xm, called mobile pole. The tunneling
unctions (30a) and (30b) are now modified again to finally get

c(x) = F (x) − F (x∗)∏t
i=1||x − x∗

i ||λ
∗
i

1

||x − xm||λm
(37a)

nd

e(x) = (F (x) − F (x∗))
t∏

i=1

e(λ∗/||x−x∗
i
||)e(λm/||x−xm||) (37b)

here xm is the position of the mobile pole and λm its strength.
t is necessary here again to use the ramp function given in Levy
nd Montalvo [25].

Each time a mobile pole is placed the tunneling function
s modified and a descent direction is computed for this new
unction. Also an initial point in a neighborhood of xm has to be
reated to continue the process. This is done as in Section 3.2
nd also differs from the original implementation given in Levy
nd Montalvo [25] and Barrón and Gómez [26].

When the strength of a pole either λ* or λm is increased, it

s not necessary to re-evaluate neither the objective function nor
ts gradient. The same is true if the position of the mobile pole
s changed or the mobile pole is turned off, when it is no longer
eeded.
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Table 1
Pure-component parameters of the PC-SAFT equation of state used in this worka

Component M (g/mol) m σ (Å) ε/k (K)

Nitrogen 28.010 1.2053 3.3130 90.96
Carbon dioxide 44.010 2.0729 2.7852 169.21
Methane 16.043 1.0000 3.7039 150.03
Hydrogen sulphide 34.080 1.7563 3.0019 222.12
Ethane 30.070 1.6069 3.5206 191.42
Propane 44.096 2.0020 3.6184 208.11
nC5 72.146 2.6896 3.7729 231.20
n
n

3

T

F
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e
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f
e
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f
n
ε

C7 100.203 3.4831 3.8049 238.40
C10 142.285 4.6627 3.8384 243.87

a From Gross and Sadowski [22], except parameters for H2S.

.3.4. Precision details
The stopping condition for a successful tunneling, that is

(xk
tu) ≤ 0, is implemented as follows:

(xk
tu) − F (x∗) ≤ TOLT(1 + |F (x∗)|) (38)

nd precision TOLT is to be selected by the user. This param-
ter is closely related to the tolerance TOLEV for considering
inima to be at the same level of the objective function value

for details on these tolerances see Nichita and Gómez [19]).

.4. General stopping conditions

The algorithm stops when any of the following global criteria
s satisfied:

(i) The tunneling phase is unsuccessful: the algorithm was not
able to find a point in another valley, starting the search from
the number of initial points allowed. The last minimum
found is the putative global minimum.

(ii) The given maximum number of function evaluations has
been reached.

iii) If the user has given a lower bound of the objective function
and the method has reached that value. The last minimum
found is the putative global minimum.

iv) If the user has given a lower bound of the objective function
and all the global minima at that level, required by the user,
have been found.

. Results

Problems 1–5 in this section are benchmark problems for
hase stability testing (involving binary and ternary mixtures),
aken from Hua et al. [10], and have been also addressed pre-
iously with the tunneling method using cubic EoS [15,16,18].
roblem 6 is for a synthetic hydrocarbon mixture of Yarborough
32]. Most of the (T,p,z) points in the numerical experiments are
hosen near phase boundaries or critical points, giving difficult
roblems.

The pure component parameters (m, ε, and σ) used in this

ork are listed in Table 1. The BIPs of short chain length alkanes

methane and ethane) with heavier hydrocarbon components,
nd CO2 BIPs with normal-alkanes were previously obtained
33] by minimizing the sum of squared relative deviations of

2

e
R
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ubble/dew point pressure and equilibrium data (when available)
f binary mixtures. The BIPs between nitrogen and hydrocarbon
omponents are taken from Garcı́a-Sánchez et al. [34].

We use in all examples very strict tolerances. We consider
ACTR = l.d + 2 corresponding to a high accuracy, and the tol-
rance associated with the projected norm of the gradient vector
GTOL is set at 1.d − 8. The tunneling method would even-

ually converge to the global minimum for any initial guess
n the feasible region. Here we report results using the two-
ided initialization of Michelsen [3], as implemented in [15].
he two initialization types are denoted here as L (for x

(0)
i =

iKi) and V (for x
(0)
i = zi/Ki). The equilibrium constants are

stimated using Wilson’s [35] relation, with pure component
ritical parameters and acentric factors taken from Reid et al.
36].

.1. Problem 1: methane–hydrogen sulphide binary mixture

The first problem (first addressed by Michelsen [3] who dis-
ussed its difficulty) is for a methane and hydrogen sulphide
inary mixture at p = 40.53 bar and T = 190 K.

The pure component parameters (m, ε, and σ) for H2S and the
IP between methane and H2S are not available in the literature.
e assume that H2S behavior can be modeled without taking

ssociation into account; H2S has an intermediate bond energy
Müller and Gubbins [21], see Fig. 1).

We calculate pure component parameters by matching avail-
ble experimental data (vapor pressure and saturated liquid
ensity) from the triple point to the critical point. The objective
unction

PAR(m, ε, σ) =
np∑
i

⎡
⎣
(

P
exp
Vi − Pcalc

Vi (m, ε, σ)

P
exp
Vi

)2

+(ρexp
Li − ρcalc

Li (m, ε, σ))
2
]

(39)

here np is the number of experimental points, is minimized
sing the simplex optimization procedure of Nelder and Mead
37] with convergence accelerated by the Wegstein algorithm
38].

Experimental data (PV and ρL) are from Kay and Ram-
osek [39] (20 experimental points in the temperature range
rom 272.04 K to 373.09 K), and Bierlien and Kay [40] (15
xperimental points in the temperature range from 286.43 K
o 370.4 K). For lower pressures, we have found only vapor
ressure data in Gómez-Nieto and Papadopoulos [41] (15 exper-
mental points in the temperature range from 164.95 K to
13.22 K). For these 15 temperatures, saturated liquid densities
rom Daubert and Danner [42] were added to the data set; finally,
p = 50. The optimum values we have obtained are m = 1.7563,
= 3.0019 Å, σ = 222.12 K, with standard relative deviations of

.54% in pressure and 2.85% in density.

The BIP between methane and H2S is calculated by matching
xperimental data (bubble points and equilibrium data) from
eamer et al. [43] and Kohn and Kurata [44]
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Table 2
Adjustment of the BIP between C1 and H2S

Source (method) np Temperature range (K) Pressure range (MPa) σP (%) σy (%) σx (%) k12

Ref. [43] (BP) 56 277.59–344.26 1.38–13.10 4.7 1.8 – 0.0516
Ref. [43] (Flash) 56 277.59–344.26 1.38–13.10 – 1.5 1.3 0.0429
Ref. [44] (BP) 49 188.70–366.48 1.38–11.03 9.0 2.6 – 0.0648
R 38–11
R 38–13
R 38–13

S

f

S

f
o

a
u

T
P

F

T
P

F

ef. [44] (Flash) 49 188.70–366.48 1.
efs. [43,44] (BP) 105 188.70–366.48 1.
efs. [43, 44] (Flash) 105 188.70–366.48 1.

The minimum of the following objective functions:

BP =
np∑
i

⎡
⎣
(

P
exp
i − Pcalc

i

P
exp
i

)2

+ (yexp
i − ycalc

i )
2

⎤
⎦ (40a)
or the bubble-point (BP) pressure method, and

Flash =
np∑
i

[
(xexp

i − xcalc
i )

2 + (yexp
i − ycalc

i )
2
]

(40b)

c

i
p

able 3
roblem 1: C1 (1)/H2S (2) at p = 40.53 bar and T = 190 K; k12 = 0.06

eed composition (z1) Stationary points of the TPD function (x1) Objective fu

0.9885 0.988500 0
0.988500 0

0.9813 0.103160 −0.000789
0.914333 −0.008863
0.981300 0
0.914333 −0.008863

0.93 0.126968 0.091261
0.930000 0
0.930000 0

0.50 0.102702 −0.066684
0.913900 −0.072790
0.981253 −0.063764
0.913900 −0.072790

0.102 0.102000 0
0.913225 −0.003062
0.913225 −0.003062

0.101 0.101000 0
0.912232 0.001343
0.101000 0

able 4
roblem 2: C1 (1)/C3 (2) at p = 50 bar and T = 277.6 K; k12 = 0.0108

eed composition (z1) Stationary points of the TPD function (x1) Objective fu

0.10 0.100000 0
0.100000 0

0.40 0.400000 0
0.865380 −0.149707
0.865380 −0.149707

0.60 0.196827 −0.231321
0.196827 −0.231321

0.90 0.900000 0
0.900000 0
.03 – 1.5 0.5 0.0614

.10 8.1 2.4 – 0.0600

.10 – 1.7 1.4 0.0475

or the flash calculation method is searched using the same
ptimization method.

In Eq. (40), (Pexp
i − Pcalc

i ), (xexp
i − xcalc

i ), and (yexp
i − ycalc

i )
re the residuals between the experimental and calculated val-
es of, bubble-point pressures, liquid compositions, and vapor

ompositions, respectively, for a given experimental point i.

The agreement between calculated and experimental values
s evaluated through the standard relative percent deviation in
ressure, σP, and standard percent deviation in mole fraction

nction (D̄) Function evaluations NT Initialization type State

493(19) 1 V Stable
479(16) 1 L

722(11 + 8 + 7) 2 V Unstable

924(10 + 4 + 34) 2 L

611(8 + 28 + 6) 2 V Stable

593(10) 1 L

753(10 + 9 + 7) 2 V Unstable

737(8 + 5 + 26) 2 L

757(11 + 8 + 7) 2 V Unstable

764(8) 1 L

1563(11) 1 V Stable
1628(8 + 13 + 5) 2 L

nction (D̄) Function evaluations NT Initialization type State

685(10) 1 V Stable
676(11) 1 L

839(10 + 13 + 10) 2 V Unstable

809(9) 1 L

1586(8) 1 V Unstable
1573(9) 1 L

984(8) 1 V Stable
979(10) 1 L
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Table 5
Problem 2: C1 (1)/C3 (2) at p = 98 bar and T = 277.6 K; k12 = 0.0108

Feed composition (z1) Stationary points of the TPD function (x1) Objective function (D̄) Function evaluations NT Initialization type State

0.40 0.400000 0 1070(10) 1 V Stable
0.400000 0 1067(7) 1 L

0.68 0.669781 −5.656E−7 826(17 + 84 + 5) 2 V Unstable
0.738787 −7.435E−5
0.669781 −5.656E−7 824(15 + 84 + 5) 2 L
0.738787 −7.435E−5

0.73 0.654521 −3.908E−5 1160(15) 1 V Unstable
0.654521 −3.908E−5 1162(13) 1 L

108012) 1 V Stable
1077(9) 1 L

f

σ

σ

σ

w
o

i
d
d
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t
a
t
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m
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T
f

T
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F

0.90 0.900000 0
0.900000 0

or the liquid, σx, and vapor, σy, phases of methane.

P = 100

[
1

np

np∑
i

(
P

exp
i − Pcalc

i

P
exp
i

)]1/2

(41a)

x = 100

[
1

np

np∑
i

(xexp
i − xcalc

i )
2

]1/2

(41b)

y = 100

[
1

np

np∑
i

(yexp
i − ycalc

i )
2

]1/2

(41c)

here σP, σx, and σy were obtained by using the optimal values
f binary interaction parameters.

Calculations are summarized in Table 2: number of exper-
mental points, temperature and pressure ranges, standard
eviations and BIPs, for data from [43,44], and for the whole
ata set. Examination of the results listed in Table 2 reveals
hat (i) standard percent deviations σP are systematically larger
han σx and σy, (ii) the BIPs calculated with the BP method
re larger than those calculated with the flash method, (iii) in

erms of temperature dependence, the trend suggested by our
alculations is that the BIP decreases as temperature increases,
nd (iv) σy from the BP method are (obviously) larger than those
rom the flash method, but they still indicated a very good agree-

i
e
t
b

able 6
roblem 3: C2 (1)/N2 (2) at p = 76 bar and T = 270 K; k12 = 0.04134

eed composition (z1) Stationary points of the TPD function (x1) Objective fu

0.90 0.900000 0
0.900000 0

0.82 0.519224 −0.001150
0.519224 −0.001150

0.70 0.501155 −0.015762
0.501155 −0.015762

0.56 0.560000 0
0.836911 −0.015989
0.560000 0
0.836911 −0.015989

0.40 0.400000 0
0.400000 0
ig. 3. TPD function for the C1/H2S (equimolar) at p = 40.53 bar and T = 190 K.

ent. We suggest the use of BIP values obtained from the BP
ethod.
Results of phase stability testing of C1 (1)/H2S (2) at

= 40.53 bar and T = 190 K for several feeds are presented in
able 3. Calculations are performed with k12 = 0.06. For each
eed there are given: the stationary points found by tunnel-

ng, the value of the objective function, the number of function
valuations (in parenthesis detailed are given for each minimiza-
ion/tunnelization cycle; FE for the last tunneling phase is given
y the difference to total FE), the number of tunneling phases,

nction (D̄) Function evaluations NT Initialization type State

879(12) 1 V Stable
881(14) 1 L

1293(8) 1 V Unstable
1293(10) 1 L

826(8) 1 V Unstable
828(10) 1 L

1121(9 + 26 + 4) 2 V Unstable

1139(27 + 26 + 4) 2 L

855(7) 1 V Stable
858(10) 1 L
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nd the initialization type (L or V). The last column indicates
he state of the mixture at given (T,p,z) conditions (stable, i.e.
ingle phase if D̄ is zero at its global minimum, or unstable,
.e. the mixture splits into two or more equilibrium phases if
he global minimum of D̄ is negative). Fig. 3 plots the TPD
unction vs. methane mole fraction for the equimolar mixture,
howing a local minimum (at x1 = 0.9813) near the global mini-
um (located at x1 = 0.9139). For one initialization the method
nds first the local minimum, and then the global minimum is
ound by a second minimization, while for the other initialization
he global minimum is found by the first minimization. Note that
he last two feeds in Table 3 are different from those in [10,15];
here were chosen in the vicinity of the phase boundary, which
s crossed at about z1 = 0.101 for the PC-SAFT EoS.

.2. Problem 2: methane–propane binary mixture

This is a binary mixture of methane (1) and propane (2)
t T = 277.6 K. The BIP is k12 = 0.0108, taken from [33]. The
esults are reported in Table 4 for p = 50 bar and in Table 5
or p = 98 bar. Feeds 2 and 3 for p = 98 bar are close to critical
onditions. The TPD function is plot vs. methane mole frac-
ion in Fig. 4a for feed 2 (with 0.68 C1). A detail is given in
ig. 4b, illustrating the particularities that make this feed diffi-
ult: the value of the objective function at the global minimum
s very small (D̄ = −7.44E − 5), and a local minimum (with
¯ = −5.66E − 7) is located in its vicinity. For both initializa-
ions, tunneling finds first the local minimum, then it escapes
rom its valley in the first tunnelization stage (note the rela-
ively high number of FE in this stage as compared with the
ther examples), and finds the global minimum in a second
inimization.

.3. Problem 3: ethane–nitrogen binary mixture
This is a binary mixture of ethane (1) and nitrogen (2)
t p = 76 bar and T = 270 K, with k12 = 0.04134 (the BIP is
aken from Garcı́a-Sánchez et al. [34]). Results for five feeds

(
T
T

able 7
roblem 4: C1 (1)/CO2 (2) at p = 60.8 bar and T = 220 K; k12 = 0.06

eed composition (z1) Stationary points of the TPD function (x1) Objective fu

0.90 0.900000 0
0.900000 0

0.80 0.509871 −0.002928
0.509871 −0.002928

0.70 0.569416 −0.001904
0.807787 −0.007517
0.569416 −0.001904
0.807787 −0.007517

0.57 0.570000 0
0.807848 −0.005677
0.570000 0
0.807848 −0.005677

0.40 0.400000 0
0.400000 0
ig. 4. (a) TPD function for the C1/C3 (0.68/0.32) at p = 98 bar and T = 277.6 K.
b) TPD function for the C1/C3 (0.68/0.32) at p = 98 bar and T = 277.6 K. Detail.

with feeds 2 and 3 at near saturation conditions) are given in
able 6.

.4. Problem 4: methane–carbon dioxide binary mixture
This is a binary mixture of methane (1) and carbon dioxide
2) at p = 60.8 bar and T = 220 K. The BIP is k12 = 0.06 [33].
he results of stability testing for five feeds are presented in
able 7.

nction (D̄) Function evaluations NT Initialization type State

836(13) 1 V Stable
833(10) 1 L

1415(8) 1 V Unstable
1416(8) 1 L

754(8 + 17 + 4) 2 V Unstable

755(9 + 17 + 4) 2 L

756(8 + 17 + 5) 2 V Unstable

757(9 + 17 + 5) 2 L

1145(10) 1 V Stable
1133(8) 1 L
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Table 8
Problem 5: C1 (1)/C2 (2)/N2 (3) at p = 76 bar and T = 270 K; k12 = −0.006, k13 = 0.0307, k23 = 0.0418

Feed composition (z1,z2) Stationary points of the TPD functiona Objective function (D̄) Function evaluations NT Initialization type State

(0.10,
0.60)

(0.070855, 0.787534) −0.013459 3839(12) 1 V Unstable
(0.103344, 0.570830) −6.329E−5 4186(20 + 165 + 10) 2 L
(0.070855, 0.787534) −0.013459

(0.30,
0.55)

(0.305823, 0.537154) −3.697E−6 4604(21 + 141 + 15) 2 V Unstable
(0.255426, 0.640274) −7.866E−4
(0.305823, 0.537154) −3.697E−6 4601(18 + 141 + 15) 2 L
(0.255426, 0.640274) −7.866E−4

(0.38,
0.54)

(0.38, 0.54) 0 4403(17) 1 V Stable
(0.38, 0.54) 0 4401(15)) 1 L

(0.05,
0.90)

(0.05, 0.90) 0
(0.05, 0.90) 0

a (x1,x2).

Table 9
Composition and BIPs for the Y8 mixture

Component Mole fraction k1j k2j

C1 0.8097 –
C2 0.0566 −0.006 –
C3 0.0306 0.011 0.0015
nC5 0.0457 0.020 0.005
n
n
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C7 0.0330 0.023 0.008
C10 0.0244 0.0271 0.010

.5. Problems 5: methane–ethane–nitrogen ternary mixture

This is a ternary mixture of methane (1), ethane (2) and nitro-
en (3) at p = 76 bar and T = 270 K. The BIPs are k12 = −0.006
33], k13 = 0.0307 [34], and k23 = 0.0418 [34]. Calculations are
erformed for four feeds; the results are presented in Table 8.
ote that the first feed (unstable) is near dewpoint conditions,
hile feeds 2 (unstable) and 3 (stable) are at near-critical con-
itions.
.6. Problems 6: the Y8 six-component synthetic mixture

Finally, we test phase stability for a six-component syn-
hetic mixture studied by Yarborough [32], referred in the

l
n
o
l

able 10
roblem 6: Y8 mixture

T, K/P, bar) Objective function (D̄) Function evaluatio

66.5/200 −0.019679 3686(15)
0 3271(17 + 11 + 14)

−0.019679

66.5/219.25 −0.749308E−5 2828(16)
0 3096(14 + 22 + 8)

−0.749308E−5

66.5/219.3 0.238929E−4 3618(16 + 79 + 7)
0
0 4069(14)

66.5/230 0 2775(30)
0 3631(14)
4991(14) 1 V Stable
4980(20) 1 L

iterature as Y8 mixture. This is a model gas condensate con-
aining normal-alkanes (feed composition is given in Table 9).

ethane and ethane BIPs from [33] (k1j and k2j, respectively)
re listed in Table 8; all other BIPs are set to zero. The dewpoint
t T = 366.5 K calculated in a predictive mode with the PC-
AFT EoS is 219.27 bar (the experimental value is 216.36 bar
32]). The results of stability testing for four pressures on the
= 366.5 K isotherm are given in Table 10.
For problems 1–5, the number of FE required to find the

lobal minimum and to ascertain globality is comparable with
he number of FE reported in [15] for TUNPEQ with the PR EoS
r SRK EoS. For the last example (with the problem dimension-
lity n = 5), just thousands of FE are required for the selected
onditions. We should mention that the tunneling method is
esigned to search for the global minimum of the objective
unction, and not for all its stationary points; however, finding
ll stationary points with tunneling is possible [19] by using a
odified objective function for the stability problem (Stateva

nd Tsvetkov [45]) with multiple global minima at the same
evel.

Global optimization methods are very costly as compared to

ocal methods. It was established in several publications that tun-
eling is at least on order of magnitude faster than other global
ptimization methods for reliably solving various phase equi-
ibrium problems with cubic EoS. The same trend is expected

ns NT Initialization type State

1 V Unstable
2 L

1 V Unstable
L

2

2 V Stable

1 L

1 V Stable
1 L
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[42] T.E. Daubert, R.P. Danner, Physical and Thermodynamic Properties of Pure
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or more complex thermodynamic models. Moreover, the use
f efficient optimization tools is more stringent if highly com-
lex thermodynamic models are used, since the cost of a single
unction evaluation is significantly higher.

. Conclusions

The gradient-based tunneling global optimization method
as successfully used for finding the global minimum of the
PD function, using the PC-SAFT EoS (without association)

or mixtures containing hydrocarbon components and hydrogen
ulphide, carbon dioxide and nitrogen. The tunneling method
roved to be reliable and efficient by several difficult numerical
xperiments. The three H2S parameters required by the PC-
AFT equation, as well as the BIP between H2S and methane
ere calculated by matching available experimental data.
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18] D.V. Nichita, S. Gómez, C. Duran-Valencia, Chem. Eng. Commun. 193

(2006) 1194–1216.
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